If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-48X+108=0
a = 1; b = -48; c = +108;
Δ = b2-4ac
Δ = -482-4·1·108
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-12\sqrt{13}}{2*1}=\frac{48-12\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+12\sqrt{13}}{2*1}=\frac{48+12\sqrt{13}}{2} $
| 7z+9-5z=-23 | | 15+2x=-10 | | 2w^2+11w+13=(w+5)^2 | | a=0.712^3 | | 8r-7=5-2r+8r | | 6m2+3m=0 | | 6m^2+3m=0 | | 16x+99x-17x=196 | | -7x=-24+x | | 90=5+2t+3t^2 | | 65=3c+1+6c-8 | | 2y-13/4=-25 | | 32a=224 | | 8x-5+4x=8x+3 | | 5q^2+45=0 | | -2=-w(w-8) | | n(n+1)/2=435 | | n(n+1)/2=420 | | n-1=-4n+14 | | 2(8y-7)+y=5y | | x+2x=8760 | | 1+4p=7-2p | | 42.4x^2-9=0 | | 2(3x-1)-(5x+2)-4=2x | | 7b+13=3b+25 | | 1-8n-8=7n-6n-12 | | 8.9x=2/5 | | 2(5x-3)=2(3x+1) | | 8.9/x=2/5 | | 2x+3(x-10)=50 | | 38x^2+5x-6=0 | | x+12=-5x+30 |